
1
[Editor(s) here] (ed.), [Book Titlen here], 1—16.
© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

HENRY LIEBERMAN AND HUGO LIU

FEASIBILITY STUDIES FOR PROGRAMMING IN
NATURAL LANGUAGE

Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA

1. ABSTRACT

We think it is time to take another look at an old dream -- that one could program
a computer by speaking to it in natural language. Programming in natural language
might seem impossible, because it would appear to require complete natural
language understanding and dealing with the vagueness of human descriptions of
programs. But we think that several developments might now make programming in
natural language feasible:

• Improved broad coverage language parsers and semantic extraction to attain
partial understanding.
• Mixed-initiative dialogues for meaning disambiguation.
• Fallback to Programming by Example and other interactive techniques.

To assess the feasibility of this project, as a first step, we are studying how non-
programming users describe programs in unconstrained natural language. We are
exploring how to design dialogs that help the user make precise their intentions for
the program, while constraining them as little as possible.

2. INTRODUCTION

We want to make computers easier to use and enable people who are not
professional computer scientists to be able to teach new behavior to their computers.
The Holy Grail of easy-to-use interfaces for programming would be a natural
language interface -- just tell the computer what you want! Computer science has
assumed this is impossible because it would be presumed to be "AI Complete" --
require full natural language understanding.

But our goal is not to enable the user to use completely unconstrained natural
language for any possible programming task. Instead, what we might hope to
achieve is to attain enough partial understanding to enable using natural language as

2 HENRY LIEBERMAN AND HUGO LIU

a communication medium for the user and the computer to cooperatively arrive at a
program, obviating the need for the user to learn a formal computer programming
language. Initially, we will work with typed textual input, but ultimately we would
hope for a spoken language interface, once speech recognizers are up to the task. We
will evaluate current speech recognition technology to see if it has potential to be
used in this context.

We believe that several developments might now make natural language
programming possible where it was not feasible in the past.

• Improved language technology. While complete natural language

understanding still remains out of reach, we think that there is a chance that recent
improvements in robust broad-coverage parsing (cf. [9]), semantically-informed
syntactic parsing and chunking, and the successful deployment of natural language
command-and-control systems [7] might enable enough partial understanding to get
a practical system off the ground.

• Mixed-initiative dialogue. We don't expect that a user would simply "read the
code aloud". Instead, we believe that the user and the system should have a
conversation about the program. The system should try as hard as it can to interpret
what the user chooses to say about the program, and then ask the user about what it
doesn't understand, to supply missing information, and to correct misconceptions.

• Programming by Example. We'll adopt a show and tell methodology, which
combines natural language descriptions with concrete example-based
demonstrations. Sometimes it's easier to demonstrate what you want then to describe
it in words. The user can tell the system "here's what I want", and the system can
verify its understanding with "Is this what you mean?". This will make the system
more fail-soft in the case where the language cannot be directly understood, and, in
the case of extreme breakdown of the more sophisticated techniques, we'll simply
allow the user to type in code.

3. FEASIBILITY STUDY

We were inspired by the Natural Programming Project of John Pane and Brad
Myers at Carnegie-Mellon University [2, 3]. Pane and Myers conducted studies
asking non-programming fifth-grade users to write descriptions of a Pac-Mac game
(in another study, college students were given a spreadsheet programming task). The
participants also drew sketches of the game so they could make deictic references.

Pane and Myers then analyzed the descriptions to discover what underlying
abstract programming models were implied by the users' natural language
descriptions. They then used this analysis in the design of the HANDS programming
language [2]. HANDS uses a direct-manipulation, demonstrational interface. While

still a formal programming language, it
hopefully embodies a programming
model that is closer to users' "natural"
understanding of the programming
process before they are "corrupted" by

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 3

being taught a conventional programming language. They learned several important
principles, such as that users rarely referred to loops explicitly, and preferred event-
driven paradigms.

Our aim is more ambitious. We wish to directly support the computer
understanding of these natural language descriptions, so that one could
"programming by talking" in the way that these users were perhaps naively
expecting when they wrote the descriptions.

Figure 1. Non-programmer’s description of Pac-Man

As part of the feasibility study, we are transcribing many of the natural language
descriptions and seeing how well they will be handled by our parsing technology.
Can we figure out where the nouns and verbs are? When is the user talking about a
variable, loop or conditional?

One of our guiding principles will be to abandon the programming language
dogma of having a single representation for each programming construct. Instead,
we will try to collect as many verbal representations of each programming construct
as we can, and see if we can permit the system to accept all of them.

4 HENRY LIEBERMAN AND HUGO LIU

4. DESIGNING DIALOG MANAGEMENT FOR NATURAL LANGUAGE
PROGRAMMING

The paradigm for the user interaction should reproduce the situation of the user
talking to a more knowledgeable programmer, who knows all the implementation
techniques. The goal for the user is to communicate their intent.

We have been inspired by some of the dialogue management philosophy of
Collagen [12]. Collagen uses a discourse model to support a user and an on-screen
agent cooperatively working on a task. Either the user or the system can take
initiative at any point, and the system keeps track of such dialogue management
issues as which goals are being worked on and which are pending.

We envision a possible dialogue as follows, inspired by the Pac-Man example
above,

(1). User: We're going to program a game, Pac-Man.
(2). System: OK. I know a few things about how to make games. We need to

decide what the playing field looks like, design some characters for the game,
how the users are going to control the characters, and how the scoring system
is going to work. OK?

(3). U: Sure. The yellow dots are set through a maze, and Pac-Man, the chomping
yellow circle, has to collect them.

(4). S: OK, let me see if I've got this straight. You want the playing field to be a
grid of squares, each containing a yellow dot, right? (System displays a grid of
squares with yellow dots). To make it a maze, we need to have some walls.
Can you draw some walls for me?

(5). U: (User draws in walls, selecting color, texture, etc.)
(6). S: Pac-Man is the name of a character in the game, represented as a yellow

circle, is that right? How's this? (System displays a yellow circle in one of the
grid squares).

(7). U: Oh, the dots should be red. (Things don't have to be done "in order". You
can refer to something previously said.)

(8). S: OK. What does it mean for Pac-Man to "collect" a dot?
(9). U: Whenever Pac-Man is on a square with a dot, he eats it. That means that

the dot is gone and the player gets another point. (The system introduces a
variable to count the number of dots eaten by Pac-Man).

(10). S: OK, now I don't understand what "eats" means. Can you explain it?
(11). U: When you draw Pac-Man, you alternate between a picture of Pac-Man

with his mouth open and a picture of Pac-Man with his mouth closed.
(12). S: Can you draw me what Pac-Man looks like when he has his mouth open?

Mouth closed?
(13). U: (Draws.) There are blinking big yellow dots that allow you to eat the

ghosts (draws picture of ghost).
(14). S: (Continues dialogue about dots and ghosts….)

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 5

Below, we give some analysis of the above-presented dialog. From (1), the
system must recognize that a “game” is the top-level programming goal. To conduct
the rest of the dialog, we assume the system has some script- or frame-based
knowledge about the major programming subgoals in programming a game. It
should leverage this understanding to dually know what to expect from the user, and
to act as a tutor to guide the user.

As (3) demonstrates, users will attempt to convey a lot of information all at once.
It is the job of the language understanding system to identify major intended actions
(e.g. “set through”), each of which are associated with a thematic agent role (e.g.
“the yellow dots”), and a thematic patient role (e.g. “a maze”). The system will also
try to correlate these filled role slots with its repertoire of programming tricks. For
example, in (3), “yellow dots” might be visual primitives, and “a maze” might
invoke a script about how to construct such a structure on the screen and in code. In
(4), the dialog management system reconfirms its interpretation to the user, giving
the user the opportunity to catch any glitches in understanding.

In (5), the system demonstrates how it might mix natural language input with
input from other modalities as required. Certainly we have not reached the point
where good graphic design can be dictated in natural language! Having completed
the maze layout subgoal, the system planning agency steps through some other
undigested information gleaned from (3). In (6), it makes some inference that Pac-
Man is a character in this game based on its script knowledge of a game.

Again in (9), the user presents the system with a lot of new information to
process. The system places the to-be-digested information on a stack and patiently
steps through to understand each piece. In (10), the system does not know what
“eats” should do, so it asks the user to explain that in further detail. And so on.

While we may not be able to ultimately achieve all of the language
understanding implied in the example dialogue above, and we may have to further
constrain the dialogue, the above example does illustrate some important strategies,
including iterative deepening of the system’s understanding and the clarification
dialogues.

5. DESIGNING NATURAL LANGUAGE UNDERSTANDING FOR
PROGRAMMING

Constructing a natural language understanding system for programming must be
distinguished from the far more difficult task of open domain story understanding.
Luckily, natural language understanding for programming is easier than open
domain story understanding because the discourse in the programming domain is
variously constrained by the task model and the domain model. This section
attempts to flesh out the benefits and challenges which are unique to a language
understanding system for programming.

6 HENRY LIEBERMAN AND HUGO LIU

5.1 Constraints from an Underlying Semantic Model

The language of discourse in natural language programming is first and
foremost, constrained by the underlying semantic model of the program being
constructed. Consider, for instance, the following passage from a fifth-grader non-
programmer’s description of the Pacman game:

Pac man eats a big blink dot and then the ghosts turn blue or red and
pacman is able to eat them. Also his score advances by 50 points.

In the previous section, we argued that through mixed-initiative dialogue, we can
begin to progressively disambiguate a programmatic description like the one shown
above, into an underlying semantic model of a game. Establishing that “Pacman” is
the main character in the game helps us to parse the description. We can, for
example, recognize that the utterances “Pac man” and “pacman” probably both refer
to the character “Pacman” in the game, because both are lexicographically similar to
“Pacman,” but there is also the confirming evidence that both “Pac man” and
“pacman” take the action “to eat,” which is an action typically taken by an agent or
character. Having resolved the meanings of “Pac man” and “pacman” into the
character “Pacman,” we can now resolve “his” to “Pacman” because “his” refers to a
single agent, and “Pacman” is the only plausible referent in the description. We can
now infer that “eat” refers to an ability of the agent “Pacman,” and “score” is a
member variable associated with “Pacman,” and that the score has the ability to
advance, and so on and so forth.

In summary, the underlying semantic model of a program provides us with
unambiguous referents that a language understanding system can parse text into.
All levels of a language processing system, including speech recognition, semantic
grouping, part-of-speech tagging, syntactic parsing, and semantic interpretation,
benefit from this phenomena of reference. Although the natural language input is
ideally unconstrained, the semantic model we are mapping into is well-constrained.
Language resolution also has a nice cascading effect, which is, the more resolutions
you make, the more you are able to make (by leveraging existing “islands of
certainty”). Resolving “Pac man” and “pacman” in turn allows us to resolve “his”
and these in turn allow us to resolve “eat” and “score.” Of course, in our proposed
mixed-initiative model, we can always prompt the user for confirmation of any
ambiguities which cannot be resolved.

In the above example, we discuss how objects and actions get resolved, but what
about programmatic controls? Are these easy to recognize and resolve? By studying
the “programming by talking” styles of many users, we expect to be able to identify
a manageable set of salient keywords, phrases, and structures which indicate
programmatic controls like conditionals and loops. Although, it would come as no
surprise if “programming by talking” maps somewhat indirectly rather than directly
onto programming control structures. For example, in the usability studies of Pane
and Myers, it is uncommon to find explicit language to describe loops directly.
Instead, there is evidence for natural language descriptions mapping into implicit
loop operations in the form of Lisp-style list processing functions like “map,”

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 7

“filter,” and “reduce.” For example, the utterance, “Pacman tries to eat all the big
blinking dots” does not seem like a programmatic control, but it actually expresses
several loops implicitly (and quite elegantly, as we might add). We can paraphrase
the utterance in pseudo-code as follows:
map(Pacman.eat,

filter(lambda dot:

dot.big AND dot.blinking,

dots))

We are aided in the generation of this pseudo-code interpretation by knowledge
of the preferences/constraints of the underlying semantic model, i.e., something that
Pacman can do is eat (x.y() relation), a dot is something which can be eaten (x(y)
relation), and dots can be big and blinking (x.y relations).

Thus far, we have generally outlined a strategy for mapping a programmatic
description into a code model by progressive stages of semantic resolution, but we
have not been rigorous about presenting a framework for semantic interpretation.
Now, we will propose to leverage the following ontological framework given by Liu
in [8], which enumerates ways of resolving English into code:

• function x.y()
• ability x.y()
• param x(y)
• property x.y
• isA x:y (subtype)
• value x=y
• assoc x-related-to-y

In [8], it is proposed that natural language phrases can be understood in terms of
compositions using the above ontology. An “interpretation” of a phrase is thus
defined as one possible mapping from the surface language to some path in the
network semantic model (Fig. 2).

8 HENRY LIEBERMAN AND HUGO LIU

car tires rating fast((a.b).c)=d(a.b).ca.b

car paint
drying
time

fast((a.b).c)=d(a.b).ca.b

car
top

speed
fasta.b (a.b)=c

car
drive

speed fasta.b(c=d)a.b(c)a.b()

car
wash

speed fastb.a(c=d)b.a(c)b.a()

car
drive

road fasta.b(c)a.b()
speed
limit

c.d &
a.b(c)

c.d=e &
a.b(c)

car
drive

road fasta.b(c)a.b()
road

material
c.d &
a.b(c)

pave-
ment

c.d=e &
a.b(c)

drying
time

e.f &
c.d = e
a.b(c)

e.f=g &
c.d = e
a.b(c)

(a) The car whose top speed is fast.

(b) The car that can be driven at a speed that is fast.

(c) The car whose tires have a rating that is fast.

(d) The car whose paint has a drying time that is fast.

(e) The car that can be washed at a speed that is fast.

(f) The car that can be driven on a road whose speed limit is fast.

(g) The car that can be driven
on a road whose road material
is pavement, whose drying time
is fast.

Figure 2. An underlying semantic model of English is used to generate
interpretations of “fast car.” From [8].

In our task of mapping surface natural language to programmatic code, we could

view the problem in a way analogous to [8], i.e., an underlying semantic model of
programming can be used to generate possible interpretations of inputted natural
language, followed by the use of contextual cues, further semantic constraints, and
dialog with the user to disambiguate from all possible interpretations to one or two
likely interpretations.

Our approach to generating and selecting interpretive mappings from
programmatic description to code is also supported by the natural language
understanding literature, where there is precedent for exploiting semantic constraints
for meaning disambiguation. BCL Papins [7], developed by BCL Technologies
R&D for DARPA, used Chomsky’s Projection Principle and Parameters Model for
command and control. In the principle and parameters model, surface features of
natural language are seen as projections from the lexicon. The insight of this
approach is that by explicitly parameterizing the possible behaviors of each lexical
item, we can more easily perform language processing. We expect to be able to
apply the principle and parameters model to our task, because the variables and
structures present in computer programs can be seen as forming a naturally
parameterized lexicon. An approach for using domain constraints to make natural
language interaction reliable is also outlined in [15].

5.2 Evolvable

The approach we have described thus far is fairly standard for natural language
command-and-control systems. However, in our programming domain, the
underlying semantic system is not static. Underlying objects can be created, used,
and destroyed all within the breath of one sentence. This introduces the need for our
language understanding system to be dynamic enough to evolve itself in real-time.
The condition of the underlying semantic system including the state of objects and
variables must be kept up-to-date and this model must be maximally exploited by all
the modules of the language system for disambiguation. This is a challenge that is

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 9

relatively uncommon to most language processing systems, in which the behavior of
lexicons and grammars are usually defined or trained a priori and are not very
amenable to change at run-time. Anyone who has endeavored to build a natural
language programming system will likely have discovered that it’s not simply the
case that an off-the-shelf natural language processing packaging can be used.

To most optimally exploit the information given by the underlying semantic
model, the natural language processing system will need to be intimately integrated
with and informed by feedback from this evolving model. For example, consider
the following fifth-grader non-programmer’s description.

Pacman gets eaten if a ghost lands in the same space.

Without information from the underlying semantic model, some pretrained part-
of-speech taggers will interpret “lands” as a noun, causing a cascade of
misinterpretations, such as interpreting “ghost lands” as a new object. However, our
underlying semantic model may know that “ghost” is a character in the game. If this
knowledge is trickled back to the part-of-speech tagger, that tagger can have enough
smarts to prefer the interpretation of “lands” as a verb untaken by the agent “ghost.”
This example illustrates that natural language processing must be intimately
informed by the underlying semantic model, and ideally, the whole natural language
programming system will be built end-to-end.

5.3 Flexible

Whereas traditional styles of language understanding consider every utterance to
be relevant and therefore must be understood, we take the approach that in a
“programming by talking” paradigm, some utterances are more salient than others.
That is to say, we should take a selective parsing approach which resembles
information extraction–style understanding. One criticism to this approach might be
that it loses out on valuable information garnered from the user. However, we
would argued that it is not necessary to fully understand every utterance in one pass
because we are proposing a natural language dialog management system to further
refine the information dictated by the user, giving the user more opportunities to fill
in the gaps.

Such a strategy also pays off in its natural tolerance for user’s disfluencies; thus,
adding robustness to the understanding mechanism. In working with user’s emails
in a natural language meeting command-and-control task, Liu et al. found that user
disfluencies such as bad grammar, poor word choice, and run-on sentences deeply
impacted the performance of traditional syntactic parsers based on fixed grammars
[7]. Liu et. al. found better performance in a more flexible collocational semantic
grammar, which spotted for certain words and phrases, while ignoring many less-
important words which did not greatly affect semantic interpretation. The import of
such an approach to our problem domain will be much greater robustness and a
greater ability to handle unconstrained natural language.

10 HENRY LIEBERMAN AND HUGO LIU

5.4 Adaptive

In working with any particular user in a programming task, it is desirable to
recognize and exploit the specific discourse style of that user in order to increase the
performance of the language understanding system. In our analysis of the natural
language programming user studies performed by Pane and Myers, we note that
some users give a multi-tiered description of the program, starting with the most
abstract description and iteratively becoming more concrete, while others proceed
linearly and concretely in describing objects and functions. Consider for example,
how the following two fifth-grader non-programmers begin their descriptions of
Pacman quite differently:

1. The object of the game is to eat all the yellow dots. If you[‘re] corn[er]ed

and there is a blinking dot eat that and the ghosts will turn a color and
when you eat them you get 200 points. When you eat all the dots you win
the game.

2. To tell the computer how to move the Pacman I would push letters, and
arrows. If I push the letter A[,] pacman moves up. When I push Q it moves
down. To make it go left and right I use the arrows.

Whereas the first non-programmer begins with a breadth-first description of the

game, starting from the highest-level goals of the game, the second non-programmer
begins with the behavioral specifics of user control, and never really explicates the
overarching goals of game anywhere in the whole description. Understanding the
descriptive style of the user allows us to improve the quality of the parsing and
dialogue. If the user is accustomed to top-down multi-tiered descriptions like non-
programmer #1, the system can assume that the first few utterances in a description
will expose many of the globally salient objects in the semantic model that will later
be referred to. For example, from the utterance, “The object of the game is to eat all
the yellow dots,” we can assume that “yellow dots” are salient globally, and that
“eat” is an action central to the game. If, however, the user is accustomed to giving
details straight away like non-programmer #2, the system can perhaps be more
proactive to ask the user for clarifications and context for what the program is about,
e.g. asking the user, “Are you programming a game?”

There are also many other dimensions along with user style can vary, such as
inter alia, example-driven scenario giving versus if-then-else explication, describing
positive behavior of a system versus negative behavior, and giving first-person
character description (e.g. “You like to eat dots”) versus third-person declarative
description (e.g. “There is a Pacman who eats dots”) versus first-person user
description (e.g. “You press the left arrow key to move Pacman.”). A natural
language programming system should characterize and recognize many of these
styles and style-dimensions, and to use this knowledge to inform both an adaptive
case-based parsing strategy, and an adaptive case-based dialogue strategy.

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 11

5.5 CAN NOVICES' DESCRIPTIONS OF PROGRAMS BE FULLY
OPERATIONALIZED?

In addition to concerns about natural language understanding per se, there is also

the concern that novice descriptions of programs are vague, ambiguous, erroneous,
and otherwise not fully precise in the way the programming language code would
be. Our analysis of the CMU data shows that, indeed, this is often the case. But that
doesn't render the cause of natural language programming hopeless. The
imprecision manifests itself in different forms, each of which has important
consequences for the dialog design.

5.6 Intentional descriptions

Above, we discussed some of the linguistic problems surrounding determining

the referents of natural language expressions such as "it" or "him". These issues
consist of figuring out ways to map expressions either to known objects in the
program or to recognize when new objects are being introduced or created. In
addition there is the problem of determining when objects are referred to by
descriptive phrases rather than direct references.

We often saw descriptions such as "the player being chased", where in a
conventional program, one might see a direct reference to a program variable. We
need to be able to distinguish between intentional descriptions used to reference
objects that the system knows about "at compile time", e.g. "When the ghosts chase
a player, the player being chased has to run away" (two different ways of referring to
a particular player), and those that imply a "run time" search, e.g. "Find a player
who is being chased and turn him green".

Further, people use different levels of specificity to refer to an object. "Pac-Man"
(by name), "the yellow circle" (by appearance), "the player" (by role) can be
interchangeable in the discourse, but may have vastly different effects when the
program is re-executed in a different context. In Programming by Example [4] this is
referred to as the "data description problem", and is also a central problem here. The
best way to deal with that problem is to give the user sufficient feedback when
future examples are executed, so that the user will see the consequences of a learned
description. New examples can be executed step-by-step, and the system can feed
back its description, so that users understand the relation between descriptions and
selected objects, and change them if they are incorrect. Systems like Lieberman,
Nardi and Wright's Grammex [4] provide ways of incrementally generalizing and
specializing descriptions or sub-descriptions so that a desired result is achieved. To
some extent, however, the user needs to learn that the exact way in which an object
is described will have consequences for the learning system. Even at best, it's not
possible to be as sloppy about descriptive phrases as we typically are in
interpersonal discourse. This is a crucial part of what it means to learn to "think like
a programmer".

12 HENRY LIEBERMAN AND HUGO LIU

5.7 Assuming context

Natural language descriptions of programs tend to make a lot of assumptions
about context that are not explicitly represented in the text. In programming
languages, such context is represented by the scope of declarations and placement of
statements. In natural language discourse, speakers assume that the listener can
figure out what the context is, either by such cues as recently mentioned objects and
actions, or by filling in necessary background knowledge. In doing natural language
programming in the context of a programming by example system, we have the
advantage of having a runtime context available which can help us discern what the
user is talking about.

You should put the name and the score and move everyone below the new score
down one.

Nowhere in this phrase does it include the implied context, "When one of the

players has achieved a new total, and the scoreboard is displayed". However, if the
user is programming interactively with concrete examples, the most likely time for
the user to make such a statement is just when such a new score has occurred. It is
the responsibility of the programming environment to figure out that what is
important about the current situation is the posting of a new score. In [4], Wolber
and Myers discuss the problem of demonstrating when to do something as well as
how to do it, under the rubric of Stimulus-Response Programming by Example.

Again, in the case of failure to recognize the context for a statement, the strategy
is to initiate a dialogue with the user explicitly about in what context the statement is
to be taken.

5.8 Out-of-order sequences and advice

As noted by Pane and Myers, users tend not to think linearly, and provide
instructions that are not properly ordered, which is why they adopted an event driven
style for HANDS. Sometimes, this is a matter of making assumptions about the
temporal context in which commands will be executed.

Packman gets eaten if a ghost lands in the same space as Packman.
If Packman gets a power pill, then he gets points by landing in the same space as
a ghost.

Taken literally as code, these statements are in the wrong order – the condition of

eating the power pill should be checked before deciding what action to take when
Pac-Man and the ghost arrive at the same spot. But the user is adopting the quite
reasonable strategy of telling us what the usual or most common case is first, and
only then informing us about the rare exceptions. These system needs to be able to
untangle such cases.

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 13

Other natural language statements provide advice. Advice is not directly
executable, but may affect what gets executed at future points in the interaction.
Advice may incrementally supply parameters or modifiers to other commands.
Advice may affect the level of generality of object descriptions. This is an important
style of interaction that is not well supported by current programming
methodologies [5].

The object of the game is to eat as many dots as you can without getting eaten by
the ghosts.

Some utterances are not actually code themselves, but directives to make edits to

the program.

When monsters are red… [they] run … to the other side of the screen. Same goes
for Pac-Man.

Here, "same goes" means "write the same code for Pac-Man as you did for the

red monsters". This suggests that users are assuming a capability for high level
program manipulation, such as the kind of interactions that take place with a tool
like The Programmer's Apprentice [13].

5.9 Missing or conflicting cases

Because order constraints are more relaxed in a natural language style
interaction, it is often more difficult to determine if all cases have been covered. Of
course, even in conventional programming, nothing prevents writing
underconstrained or overconstrained programs. Some software engineering test
methodologies for end users do attempt to infer case coverage in some situations
[14], and we envision similar techniques might be applied in our domain.

In an event driven style as advocated by Pane and Myers it is also possible for
handlers of different events to conflict. Graphical- and example-based feedback
helps avoid, and catch cases of, underconstrained and overconstrained situations.
We also like the critique-based interaction found in McDaniel [7], where directions
"stop this" (for overconstrained situations) and "do something" (for
underconstrained situations) correct the system's responses.

5.10 Change of perspective

Users don’t always describe things from a consistent viewpoint. They may
switch, unannounced, between local and global viewpoints, between subjective and
objective viewpoints, between the viewpoints of various actors in the program. For
example, a user might say “When you hit a wall…” (you meaning a screen
representation of a game character), and “When you score a point…” (you meaning
the human user), in the same program without warning. Again, this is a form of
missing context which the reader is expected to supply. People do recognize the

14 HENRY LIEBERMAN AND HUGO LIU

inherent ambiguity of such references, so they are often willing to supply
clarification if necessary.

6. ANNOTATION INTERFACES

Another, less radical, possibility for a natural language programming interface is
to let the user annotate a natural language description. The idea would be for the
user to type or speech-transcribe a natural language description of the program, and
then manually select pieces of the text that correspond to meaningful entities in the
program. This reduces the burden on the system of reliably parsing the text. Such an
approach was taken by Tam, Maulsby, and Puerta in U-Tel [11], which has an
underlying model-based interface methodology. In the illustration, the full text
appears in the upper left, and highlighted words for “steps”, “actions”, and “objects”
are collected in the other panes.

Figure 3. Tam et al’s U-Tel lets users annotate text describing a program.

U-Tel, however, did not construct a complete program; rather it functioned

mainly as a knowledge elicitation aid, and required further action by a programmer
conversant in the Mobi-D model-based formalism.

The annotation approach is attractive in many circumstances, particularly where
a natural language description of a procedure already exists, perhaps for the purpose
of communicating the procedure to other people. We believe the approach could be

FEASIBILITY STUDIES FOR PROGRAMMING IN NATURAL LANGUAGE 15

extended to support full procedural programming. Other attractive features of this
approach are that it is less sensitive to order, and doesn’t require the system to
understand everything the user says. Even in natural language programming, users
“comment” their code!

7. NOTE

Portions of this paper were written by dictation into the speech recognition
program IBM ViaVoice, by the first author when he was recovering from hand
injuries sustained in a bicycle accident.

Current speech interfaces are not good enough to perform unaided transcription;
all require a mixed-initiative critique and correction interface to display recognition
hypotheses and allow rapid correction. The author thus experienced many issues
similar to those that will arise in natural language programming; among them:
inherent ambiguity (no speech program can distinguish between too and two by
audio alone), underspecification and misunderstanding of natural language
directives. Although today’s speech interfaces leave a lot to be desired, we were
struck by how successfully the interaction is able to make up for deficiencies in the
underlying recognition; this gives us hope for the approach. We apologize for any
errors that remain in the paper as a result of the transcription.

8. CONCLUSION

Programming directly in natural language, without the need for a formal
programming language, has long been a dream of computer science. Even COBOL,
one of the very early programming languages, and for a long time, the dominant
business programming language, was designed to look as close as possible to natural
language to enhance readability. Since then, very few have explored the possibility
that natural language programming could be made to work.

In this paper, we have proposed an approach based on advances in natural
language parsing technology, mixed-initiative dialog, and programming by example.
To assess the feasibility of such an approach we have analyzed dialogs taken from
experiments where non-programmer users were asked to describe tasks, and it seems
that many of the important features of these dialogs can be handled by this approach.
We look forward to the day when computers will do what we say, if only we ask
them nicely.

9. ACKNOWLEDGMENTS

We would like to thank John Pane and Brad Myers for sharing with us the data
for their Natural Programming experiments.

16 HENRY LIEBERMAN AND HUGO LIU

10. REFERENCES

1. Natural Language R&D Group Website. BCL Technologies. At:
http://www.bcltechnologies.com/rd/nl.htm

2. J.F. Pane, B.A. Myers, and L.B. Miller, Using HCI Techniques to Design a More Usable
Programming System, Proceedings of IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (HCC 2002), Arlington, VA, September 3-6, 2002, pp. 198-206.

3. J.F. Pane and B.A. Myers, Usability Issues in the Design of Novice Programming Systems, Carnegie
Mellon University, School of Computer Science Technical Report CMU-CS-96-132, Pittsburgh, PA,
August 1996.

4. Lieberman, H., ed. Your Wish is My Command: Programming by Example, Morgan Kaufmann, 2001.
5. Lieberman, H., Interfaces that Give and Take Advice, in Human-Computer Interaction for the New

Millenium, John Carroll, ed., ACM Press/Addison-Wesley, pp. 475-485, 2001.
6. Lieberman, H. and H. Liu, Adaptive Linking between Text and Photos Using Common Sense

Reasoning. In De Bra, Brusilovsky, Conejo (Eds.): Adaptive Hypermedia and Adaptive Web-Based
Systems, Second International Conference, AH 2002, Malaga, Spain, May 29-31, 2002, Proceedings.
Lecture Notes in Computer Science 2347 Springer 2002, ISBN 3-540-43737-1, pp. 2-11.

7. Liu, H., Alam, H., Hartono, R. (2001). Meeting Runner: An Automatic Email-Based Meeting
Scheduler. BCL Technologies -- US. Dept of Commerce ATP Contract Technical Report. Available
at: http://www.media.mit.edu/~hugo/publications/

8. Liu, H. (2003). Unpacking meaning from words: A context-centered approach to computational
lexicon design. In Blackburn et al. (Eds.): Modeling and Using Context, 4th International and
Interdisciplinary Conference, CONTEXT 2003, Stanford, CA, USA, June 23-25, 2003, Proceedings.
Lecture Notes in Computer Science 2680 Springer 2003, ISBN 3-540-40380-9, pp. 218-232.

9. Liu, H. (2004). MontyLingua: An End-To-End Natural Language Understander for English. Toolkit
available at: http://web.media.mit.edu/~hugo/montylingua.

10. McDaniel, R, Demonstrating the Hidden Features That Make an Application Work, in Your Wish is
My Command, H. Lieberman, ed., Morgan Kaufmann, 2001.

11. Tam, R.C., Maulsby, D., and Puerta, A.R. U-TEL: A Tool for Eliciting User Task Models from
Domain Experts. IUI98: International Conference on Intelligent User Interfaces, San Francisco,
January 1998, pp. 77-80.

12. Rich, C.; Sidner, C.L.; Lesh, N.B., COLLAGEN: Applying Collaborative Discourse Theory to
Human-Computer Interaction, Artificial Intelligence Magazine, Winter 2001 (Vol 22, Issue 4, pps 15-
25.

13. Rich, C.H., and Waters, R.C. The Programmer's Apprentice. Addison-Wesley: Reading, MA, 1990.
14. Ruthruff, J. R., Shrinu Prabhakararao, James Reichwein, Curtis Cook, Eugene Creswick, and

Margaret Burnett, Interactive Visual Fault Localization Support for End-User Programmers, Journal
of Visual Languages and Computing, to appear.

15. Yates, A., O Etzioni, and D. Weld, A Reliable Natural Language Interface to Household Appliances,
Conference on Intelligent User Interfaces, Miami, Florida, January 2003.

